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Statistical mechanics of protein sequences

T. Gregory Dewey
Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208

~Received 17 May 1999!

A statistical mechanical treatment of biological macromolecules is presented that includes the sequence
information as an internal coordinate. Using a path integral representation, the canonical partition function can
be represented as a product of a polymer configurational path integral and a sequence walk path integral. In
most biological instances, the sequence composition influences the potential energy of intersubunit interaction.
Consequently, the two path integrals are not separable, but rather ‘‘interact’’ via a sequence-dependent con-
figurational potential. In proteins and RNA, the sequence walk occurs in dimensions greater than three and,
therefore, will be an ideal ‘‘polymer.’’ The Markovian nature of this walk can be exploited to show that all the
structural information is contained in the sequence. This latter effect is a result of the dimensionality of the
sequence walk and is not necessarily a result of biological optimization of the system.
@S1063-651X~99!11910-X#

PACS number~s!: 87.10.1e, 05.40.Fb, 87.15.Aa
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I. INTRODUCTION

There has been ongoing interest in primitive theoreti
models of protein folding. These models have been both a
lytic ~cf. @1–3#! and computational~cf. @4–6#, and @7#! and
have focused on the minimal requirements that a polym
must have to fold like a protein. Typically, this work ha
focused on those properties that allow a polymer to hav
distinct, well-separated ground-state energy and to b
maximally compact structure. Much of the impetus of th
past work came from the development of the theoretical
sis for heteropolymer freezing. This revealed the possibi
of a phase transition between two compact globular po
meric states. One of these states has an exponentially
number of conformations while the other is characterized
a small number of low energy conformations. Heteropolym
freezing was originally couched in terms of a random ene
model@1# and was based upon the analogy with spin glas
@8#. A more general model based on the replica method
subsequently developed@2#. Most recently, these differen
approaches were melded in a mathematically simplifi
model @3#. In this work, it was shown that an annealed h
eropolymer model could yield results comparable to the r
dom energy model and only require a simple averaging p
cedure. In the present work, additional properties of
annealed heteropolymer are explored using a path inte
formulation.

Proteins in nature have other properties outside of th
explored by the primitive models. Many of these propert
arise from the interplay between sequence and structure.
sequence phenomenology can be grouped within three m
observations. These are: sequence dictates structure, mo
lar evolution has a stochastic component, and sequence
tistics have a Markovian nature. As increasingly sophi
cated ‘‘primitive models’’ are explored, it is important t
incorporate this broader phenomenology into the requ
ment for a minimal model of a proteinlike polymer.

The underlying premise of the protein folding problem
that sequence dictates structure. This premise has a long
tory in molecular biophysics and originated with the expe
PRE 601063-651X/99/60~4!/4652~7!/$15.00
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mental observations of Anfinsen@9#. In ongoing work, the
information content of protein sequences@10#, of protein
structures@11#, and of the shared or mutual information b
tween sequence and structure@12# has been estimated. It ha
been argued, using information complexity, that the inform
tion content of a protein sequence is directly proportiona
its configurational entropy. It can also be shown that
information content of the structure is entirely contained
the information of the sequence. Thus, analysis from inf
mation theory is consistent with the experimental obser
tion that the information contained in a protein sequence
sufficient to determine its structure.

The second feature of sequence-structure relationship
Kimura’s observation of random neutral mutations. Kimu
realized that protein sequences evolved at nearly a cons
rate, independent of phylogeny. He attributed this to a s
chastic evolutionary-neutral process of base substitu
@13#. Thus, it appears that most proteins can sustain a sig
cant amount of variation in their amino acid sequence w
out dramatically altering the structure. Since its inceptio
the neutral theory of evolution has sparked considerable
bate. This theory was countered by a Darwinian selectio
point of view that requires an evolutionary advantage
mutations to become fixed in a population. Subsequent w
from both camps have softened the stance on the ‘‘arrow
time’’ for evolution @14#. For our present needs, suffice it
say that there is a strong stochastic component to pro
evolution.

The third observation on sequence-structure relations
comes from the modeling of sequence statistics. Markov
hidden Markov models~HMM ! have been successfully ap
plied to a number of problems of pattern recognition in p
tein sequences@15,16#. Such models have been used for mu
tiple sequence alignment, modeling of secondary struct
consensus patterns in protein superfamilies and phylogen
reconstruction. These models are based on first order Ma
processes and are frequently successful in capturing the o
within a family of sequences. These observations sugg
that protein sequences will obey a statistical ‘‘superposit
principle’’ that reflects their underlying Markovian nature.

In this paper, a path integral formulation for anneal
heteropolymers is presented. This formalism is then use
4652 © 1999 The American Physical Society
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PRE 60 4653STATISTICAL MECHANICS OF PROTEIN SEQUENCES
explore conditions that are consistent with the sequence
nomenology discussed above. In Sec. II, we present a
ristic derivation of the relationship of the Shannon inform
tion content of a polymer and its thermodynamic entro
This section serves to introduce the notations and the in
mation theoretical relationships used throughout the pa
Section III presents the configurational integral of t
sequence-structure system using the sequence as intern
ordinates of the system. In this section, the concept of
quence space is introduced and the sequence is viewed
walk or ideal polymer in that space. A path integral rep
sentation of the canonical partition function is presented
views the system as one analogous to two separate, inte
ing polymers. In the present case, one of the polymers is
sequence walk while the second one is the actual polym
This result is then used to derive general expressions for
entropy of the system and to show the contributions fr
sequence and polymer configuration~structure!. In Sec. IV,
the sequence-structure path integral is represented as
quence path integral with an influence functional. A var
tional expansion of the path integral is developed and
Shannon information properties are established. In Sec
we show how to introduce biological constraints into t
formalism. As will be seen, biological constraints effective
act as an external potential. Section VI presents a brief s
mary of these results.

II. INFORMATION CONTENT OF A POLYMER
CONFIGURATION

In this heuristic section, the calculation of the Shann
information entropy for a configurational state of a polym
is presented. As will be seen, this quantity can be relate
the thermodynamic entropy. Since the calculation of the
annon entropy is central to later arguments, this section
vides the groundwork for the paper. Following the canoni
description of a polymer chain ofN units with a set of bond
vectors,$Ri%, the probability of a given chain configuratio
is given by@17#

P~$Ri%!5
G~$Ri%!

Q
, ~2.1!

where

G~$Ri%!5exp@2bW~$Ri%!#)
j 51

N

t~Rj !, ~2.2!

and the canonical partition function is

Q5E d$Ri%G~$Ri%!. ~2.3!

The bond probability distribution function is given byt(Rj ),
andW($Rj%) is the potential energy.

Given a population of polymer configurations, the Sha
non information entropy,I, is defined as

I 52E d$Rj%P~$Rj%!ln2 P~$Rj%! ~2.4!
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1

QE d$Rj%G~$Rj%!ln2 G~$Rj%!1 ln2 Q.

~2.5!

The first term on the right-hand side of Eq.~2.5! represents
the information content of encoding the walk of the polym
configuration. For an ideal polymer, it is the informatio
content of a Markov chain. The second term is the length
the binary string required to specify the number of config
rational states available to the system.

The thermodynamic entropyS for the polymer, can be
determined from standard statistical mechanical relations
involving the Helmholtz free energyF:

Q5e2bF, ~2.6!

S52
]F

]T
. ~2.7!

With these results, one finds

S52
k

QE d$Rj%G~$Rj%!ln~e2bW($Ri %)!1k ln Q,

~2.8!

where the natural logarithm is now used. Using Gibbs’
equality @18#, one obtains

S>kI ln 2. ~2.9!

The difference in the Shannon information entropy and
thermodynamic entropy is a term that is proportional to
radius of gyration squared. In some applications, this w
simply be a constant andI will be proportional toS.

III. PATH INTEGRAL FOR AN ANNEALED
HETEROPOLYMER

A statistical mechanical model of biomolecular structu
that formally incorporates sequence information into the c
figurational statistics of the polymer is presented in this s
tion. The aim of this model is to establish the conditio
sufficient to describe the three phenomenological feature
sequence-structure relationships. To this end, we introd
sequence information as an internal coordinate to the p
mer. This is analogous to a polymer whose units have
crete internal coordinates similar to anN-dimensional spin
model. This puts sequence variables on an equal footing w
spatial variables. Such a description has been employed
viously in a heteropolymer, random energy model of a p
tein @3#. The simultaneous averaging over spatial and
quence coordinates gives the partition function for
annealed heteropolymer. This annealed polymer model
the attractive feature that the thermodynamic averages do
require the complicated replica averaging procedure foun
other disordered systems. Such annealed polymer mo
show the properties required of primitive protein foldin
models.

To describe the configuration of such a polymer, one m
consider the sequence~or spin! vector, si , of each compo-
nent along with the bond vectors,r i . The sequence vector
are unit vectors used to describe the chemical identity of
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4654 PRE 60T. GREGORY DEWEY
polymeric unit. They are given by

s~1!5$1,0, . . . ,0%,

s~2!5$0,1, . . . ,0%, ~3.1!

A

s~m!5$0,0, . . . ,1%,

wherem is the length of the alphabet used to describe
sequence and each vector represents an individual am
acid ~for proteins! or nucleotide~for RNA!. For proteins,m
520, for the 20 different amino acids. For nucleic acids,m
54, representing the four different nucleotides. Note t
this vector representation of sequence composition is dif
ent than the description of ‘‘sequence space’’ commo
used by evolutionary biologists@19,20#. Sequence space is
high-dimensional space where each possible sequence
N unit polymer has its own dimension. Thus, for a protein
N units, sequence space will have 20N dimensions. While
this space is convenient for conceptualizing sequence ev
tion, it does not have practical utility for our present purpo
Instead, a biopolymer sequence is represented as a ‘‘con
ration’’ of sequence vectors.

The sequence position vector for thej th unit within the
polymer can be described in a similar manner as the sp
position vector:

Sj5(
i 51

j

si . ~3.2!

The bond vector can also be represented in terms of pos
sequence vectors assj5Sj2Sj 21. Using this set of spatia
and internal coordinates, the probability of a configuration
given by

P~$Ri%,$Si%!5G~$Ri%,$Si%!/Q, ~3.3!

with the partition function given as

Q5E d$Ri%d$Si%G~$Ri%,$Si%!. ~3.4!

The Greens function is defined as

G~$Ri%,$Si%!5)
i 51

N

t~$Ri%!ts~$Si%!

3e2bW($Ri %)e2bW8($Ri %,$Si %), ~3.5!

with the spatial bond probability distribution function@17#:

t~Ri !5t~r i2r i 21!5S 3

2p l D
3/2

expS 23Ri
2

2l D , ~3.6!

where l is the bond distance. The sequence ‘‘bond’’ pro
ability function is assumed to be of the following form:

t~Si !5ts~si2si 21!5S m

2p D 3/2

expS 2mSi
2

2 D , ~3.7!
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where the sequence ‘‘bond distance’’ is taken as unity. F
lowing the treatment of discrete spatial coordinates, the
quence bond probability function is taken as a continuo
Gaussian distribution. The potential terms in Eq.~3.5!,
W($Ri%) andW8($Ri%,$Si%), are the potential of interaction
between polymeric units that are independent and depen
on sequence, respectively. The present model differs from
‘‘Ising polymer’’ in that there is no potential term such a
W9($Si%). This is because there is no physical basis for
teractions between amino acids as compositional units.
sequential composition of the biopolymer influences succ
sive units via its effect on the physical configuration, i.
W8($Ri%,$Si%) and not by any through space interactions
in the spin case.

Considering the discrete nature of the sequence walk
may appear that Eq.~3.7! is a serious and highly specifi
assumption. Actually, when used in conjunction with t
limiting procedure implicit in the path integral formulation,
provides a standard description of a discrete random w
~@21#, see also@22#!. One should also bear in mind that th
sequence walk need not be self-avoiding. Thus, there is
need to incorporate excluded volume effects into the p
integral for this walk.

Instead of working with the configurational probabilit
distribution function, Eq.~3.3!, the simpler end-to-end distri
bution function is considered. This is given by

P~R0,RN ,S0 ,SN ,N!5G~R0 ,RN ,S0 ,SN ,N!/Q, ~3.8!

with the end-to-end partition function as

Q5E dR0dRNdS0dSNG~R0 ,RN ,S0 ,SN ,N!. ~3.9!

Using a path integral representation for the end-to-e
Greens function, one has

G~R0 ,RN ,S0 ,SN ,N!

5E
s(0)5S0

s(N)5SND@s~t8!#E
r (0)5R0

r (N)5RND@r ~t!#

3expF21/NE
0

NE
0

N

dtdt8$~2/m!ṡ2~t8!

1~2/3l ! ṙ2~t!%G
3expF21/NE

0

NE
0

N

dtdt8$bV„r ~t!…

1bV8„s~t8!,r ~t!…%G , ~3.10!

wheret andt8 are the continuous space curves of the po
mer configuration and the sequence walk, respectively,
the ‘‘dot’’ notation is the derivative with respect to thes
curves. The potentialsV„r (t)… andV8„s(t8),r (t)… now rep-
resent the continuous versions ofW($Ri%) and
W8($Ri%,$Si%).

Interestingly, the partition function, Eq.~3.9!, can be
viewed as representing two independent polymers that in
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PRE 60 4655STATISTICAL MECHANICS OF PROTEIN SEQUENCES
act through a potential. One polymer is the actual phys
entity in three-dimensional space while the second ‘‘virtu
polymer’’ is the m-dimensional walk in sequence spac
When V8„s(t8),r (t)…50, there are no interactions and th
polymers are independent of each other. In this case,
partition functions are separable:

Q5QstrQseq, ~3.11!

and the entropies and the Shannon information will be in
pendent of each other:

S5Sstr1Sseq, ~3.12!

I 5I str1I seq. ~3.13!

In such a case, there is no shared information between
quence and structure. Note, however, that the sequenc
formation makes a true contribution to the thermodynam
entropy. This thermodynamic contribution is loosely ana
gous to the residual entropy found is certain crystals w
specific molecular configurations are frozen into the syst
For considerations of molecular evolution, the importa
consequence of Eq.~3.12! is that the same thermodynam
pressures to maximize the entropy of the structure will a
drive the sequence. In general,V8„s(t8),r (t)…Þ0, and this
situation is considered in the next section.

IV. SEQUENCE-STRUCTURE INFLUENCE FUNCTIONALS

For most biopolymers, Eqs.~3.11!, ~3.12!, and~3.13! will
not hold. The polymer-sequence interaction term ensures
there will be a shared Shannon information, as well as th
modynamic entropy, between sequence and structure. A
tailed analysis using Eq.~3.9! would obviously be extremely
difficult. Nevertheless, there are certain aspects of this p
lem which allow some conclusions to be drawn. The m
consideration is the nature of the ‘‘sequence polymer’’
walk. Because the dimensionality of the walk is four
higher for biopolymers of interest, the resulting ‘‘sequen
polymer’’ will be ideal ~cf. @22,23#!. This is because the
probability of a polymer folding back on itself in dimension
greater than three is virtually nonexistent. Therefore, th
will be no excluded volume effect. Consequently, the e
to-end probability function can be represented as an id
polymer, i.e., a Gaussian distribution. Because of this eff
perturbation techniques could be used to treat the pote
energy term.

One could develop cluster expansions of the potential
ing the polymer perturbation approaches described pr
ously @24#. However, in the present work, a variational a
proach using influence functionals is taken. The Gree
function, Eq.~3.10!, can be represented in a manner simi
to Feynman’s influence functionals@25#. Feynman developed
the influence functional to describe the interactions of a
croscopic system with a heat bath. In the present case
polymer path integral equivalent of the influence function
represents the interaction of two ‘‘polymers.’’ The syste
consists of the ‘‘virtual polymer,’’ given by the sequenc
walk, interacting with potentialV8„s(t8),r (t)… with the ac-
tual polymer.

The end-to-end Greens function can be represented a
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G~R0 ,RN ,S0 ,SN ,N!5E
s(0)5S0

s(N)5SN
F„R0 ,RN ,s~t8!…

3expF2E
0

N

dt8$~2/m!ṡ2~t8!%GD@s~t8!#, ~4.1!

with the influence functional defined as

F„R0 ,RN ,s~t8!…5E
r (0)5R0

r (N)5RND@r ~t!#

3expF2E
0

N

dt$~2/3l!ṙ2~t!%G
3expF21/NE

0

NE
0

N

dtdt8

3$bV„r ~t!…1bV8„s~t8!,r ~t!…%G . ~4.2!

The form of the Greens function, Eq.~4.1!, is indicative of
the sequence walk being driven by a random external fo
In this analogy, the force is derived from the physical inte
unit potentials in the polymer. This formulation is in keepin
with Kimura’s observation of a stochastic component to
quence evolution. In this case, structurally neutral chan
drive an apparent random change in sequences.

The sequence walk described above occurs in a sp
with dimensionality greater than three. This is the critic
dimension for random walks. Walks of dimensionali
greater than or equal to four will be ideal random wal
@22,23#. While the potential termV8„s(t8),r (t)… will pro-
vide some strong constraints on possible sequences, t
constraints will essentially be potential spikes in a high
mensional space. The sequence walk can avoid forbid
regions without significantly altering its end-to-end statisti
This is a consequence of the high dimensionality of
space.

With these considerations, it is anticipated that the p
integral in Eq.~4.1! will result in a Gaussian distribution o
the end-to-end sequence vector. The sequence walk ca
viewed as an extremely ‘‘high temperature’’ walk that w
not be strongly influenced by external potentials. This sit
tion is ideal for the application of variational methods@26#.
In such an approach, the influence functional will take t
following form:

F„R0 ,RN ,s~t8!…5E
r (0)5R0

r (N)5RND@r ~t!#

3expF2E
0

N

dt$~2/3l ! ṙ2~t!%G
3expF2E

0

N

dt$bV„r ~t!…1bV8„s̄~t8!,r ~t!…%G ,
~4.3!

where the trial potentialV8„s̄(t8),r (t)… is a potential taken
over some average path of the sequence walk. For
present formal development, we need not specify the spe
form needed to optimize this potential.

The sequence end-to-end probability function is given

P~S0 ,SN ,N!5E P~R0,RN ,S0 ,SN ,N!dR0dRN . ~4.4!
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4656 PRE 60T. GREGORY DEWEY
A perturbative expansion of the potential term gives

^V8„ s̄~t8!,r ~t!…&5E E
r (0)5R0

r (N)5RND@r ~t!#bV8„ s̄~t8!,r ~t!…

3expF2E
0

N

dt$~2/3l!ṙ2~t!1bV„r ~t!…%GdR0dRN .

~4.5!

Because the high-dimensional sequence walk will be idea
first order perturbative expansion can be considered@24#.
This gives an end-to-end probability function as

P~S0 ,SN,N!5
e2b^V8„s̄(t8),r (t)…&

Q E
s(0)5S0

s(N)5SN

3expF2E
0

N

dt8$~2/m!ṡ2~t8!%GD@s~t8!#.

~4.6!

This distribution function is essentially a random walk pa
integral multiplied by a potential-specific amplitude term
This function shows the Markovian nature of the seque
walks. Since Eq.~4.6! will obey a Markovian superposition
principle, it establishes the connection with the phenomen
ogy of sequence modeling. This result suggests that Mar
and hidden Markov behavior of protein sequences will oc
when the perturbative expansion in Eq.~4.5! is valid.

The final phenomenological feature to be explored is
relationship between sequence and structural information
sequence predicts structure, then all of the information c
tained in the structure is shared with the sequence. The
formation of the sequence-structure system is given
@12,27#

I ~R,S!5I ~S!1I ~R!2I ~R:S!, ~4.7!

where I (R,S) is the joint information content of the
sequence-structure system,I (S) and I (R) are the informa-
tion contained in sequence and structure, respectively,
I (R:S) is the mutual or shared information between s
quence and structure. Observations on proteins sugges
I (R:S)5I (S). This is equivalent to

I ~R,S!5I ~S!. ~4.8!

The joint Shannon information based on the end-to-end j
distribution function is given by

I ~R,S!5E dR0dRNdS0dSN$P~R0,RN ,S0 ,SN ,N!

3 ln P~R0,RN ,S0 ,SN ,N!%, ~4.9!

and the sequence Shannon information is

I ~S!5E dS0dSN$P~S0 ,SN ,N!ln P~S0 ,SN ,N!%.

~4.10!

Condition ~4.8! is satisfied when
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E dR0dRN$P~R0,RN ,S0 ,SN ,N!ln P~R0,RN ,S0 ,SN ,N!%

5 H E P~R0,RN ,S0 ,SN ,N!dR0dRNJ
3 lnH E P~R0,RN ,S0 ,SN ,N!dR0dRNJ . ~4.11!

The use of Eq.~4.6! implies that exp̂2bV8„ s̄(t8),r (t)…&
'^exp2bV8„ s̄(t8),r (t)…&. This is equivalent to

^V8N
„ s̄(t8),r (t)…&5^V8„ s̄(t8),r (t)…&N. Consequently, the

equality in Eq.~4.11! can be established by a series expa
sion. Thus, the third phenomenological feature, seque
dictates structure, is handled by the present model.

The role of sequence information in determining t
folded three-dimensional structure of the polymer has h
torically been considered a salient feature of proteins@9#. It
is natural to presume that this feature goes hand in hand
the biological function of the folded state of the protei
While there are doubtless biological driving forces favori
protein sequences that fold into unique structures, this p
nomena is not necessarily a result of biological selection.
shown in this work, any polymer with a composition of mo
than three distinguishable chemical units can have the p
erty of sequence dictating structure. This is a consequenc
the high dimensionality of the sequence walk. In the pres
work, we considered a variational treatment of the polym
statistics that leads to the condition that all the structu
information is contained within or shared with the sequen
information. Our goal in doing this is not to explicitly solv
the configurational partition function. Rather, the formal r
sult is that within the assumptions leading to an accur
variational solution, sequence will dictate structure. Th
there are physical conditions that can lead to the biologic
important observations on protein sequence-structure r
tionships.

V. INTRODUCING BIOLOGICAL CONSTRAINTS
INTO THE FORMALISM

The results of the previous section show that seque
can dictate structure in biopolymers when certain phys
conditions are met. This physical explanation is counter
the traditional view that protein evolution was driven by bi
logical structural and functional constraints. In this trad
tional view, biological pressures forced proteins to be m
than collapsed heteropolymers, but rather to assume hi
specific three-dimensional structures. To achieve structu
with specific functions, proteins consisting of a unique am
acid sequence are required. As a result of this evolution,
information inherent in the sequence is carried over to
structure.

Given the physical model of biological sequences p
sented in the previous section, the natural question is, h
do biological pressures influence sequence walks? At firs
might appear that because of the high dimensionality of
walk, the statistics of protein sequences will be unaffected
external influences. This is true for parameters such as
radius of gyration or end-to-end probability. The vastness
sequence space allows significant constraints to be put on
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system without altering the nature of the sequence walk. B
logical constraints placed by evolutionary pressure can
viewed as external to the sequence-structure system. T
constraints are fixed by the nature of the organism, the e
ronment, and the individual phenotypes that are being
pressed by a given individual. They will rarely be alter
once the protein has been optimized through evolution
this regard, they are similar to systems with ‘‘permanent
tanglements.’’ Such systems occur when external fields
size constraints are placed on the system. Such a system
be a polymer in a confined space. Similarly, if the system
prepared in such a manner where there are irreversible
ages, as in crosslinked polymers, then the system has
constraints.

The specification of a biologically functional macromo
ecule can yield these sorts of constraints in sequence sp
For instance, a DNA binding protein must be positive
charged to associate with the negatively charged DNA
this case, negatively charged amino acids must be effecti
excluded from such a protein. This condition will essentia
form a wall in sequence space, that the sequence walk ca
penetrate for biological reasons. A second example can
found in enzymes. Typically, there are two or three am
acids at the active site of an enzyme that are inviolate.
tering these amino acids will destroy all enzymatic activi
This condition serves as an external biological constraint
crosslinks or ties down the sequence space trajectory to
cific locations. The need for biological activity for a macr
molecule creates a complex and varied set of constraints
the sequence space trajectory. Yet, because sequence sp
of such a high dimensionality, these constraints will ha
little effect on the overall statistics of the trajectory.

To incorporate external biological constraints into the f
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malism, we then follow an approach similar to that used
treat crosslinked polymers@21#. Taking Eq.~3.4! as a start-
ing point, these constraints are included as

Q5E d$Ri%d$Si%d„k2K~$Ri ,Si%!…G~$Ri%,$Si%!,

~5.1!

whereK($Ri ,Si%) is a mathematical description of the co
straint, andk is the particular value of the constraint in th
system. For the case of an enzyme,K($Ri ,Si%) may repre-
sent the specification of the structural and sequence cha
teristics that the system must have for the enzyme to ha
catalytic activity at a biologically viable level. It might in
clude the sequence and structural requirements for the
zyme to have some minimal steady state kinetic prope
One can return to the Gaussian limit of thed function and
use the limiting process that defines the functional integ
Since K($Ri ,Si%) will have a complicated form, this ap
proach will recover a Gaussian integration over a com
cated function in$Ri ,Si%.

A conceptually and mathematically more appealing a
proach is to use the Dirichletd function to represent the
constraint@21#. The constraint defines regions of configur
tion and sequence space that cannot be occupied becau
loss of biological activity. This definition also allows one
return to the path integral representation. The region that
be occupied is defined asV. The constraint is now defined a

u~$r ,s%!5H 1 $r ,s%PV
0 otherwise.

~5.2!

The Green’s function with constraints is now given by
G~R0 ,RN ,S0 ,SN ,N!5E
s~0)5S0

s(N)5SND@s~t8!#E
r (0)5R0

r (N)5RND@r ~t!#expF21/NE
0

NE
0

N

dtdt8$~2/m!ṡ2~t8!1~2/3l!ṙ2~t!%G
3expF21/NE

0

NE
0

N

dtdt8$bV„r (t)…1bV8„s(t8),r(t)…%G)
tseq

N

)
tstr

N

u@r ~tstr!,s~tseq!#. ~5.3!
in-
rm.

he
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tics
us,
ect
by
nce

y-
als,
Treating the Dirichletd function as a logarithm of exponen
tials, one recovers an infinite barrier potential function.
goes to infinity outside ofV and is 0 inside ofV. The con-
straint modifies the sequence-structure potential term in
path integral,bV8„s(t8),r (t)…, giving an effective interac-
tion:

E
0

NE
0

N

dtdt8bVeff8 „s~t8!,r ~t!…

5E
0

NE
0

N

dtdt8H bV8„s~t8!,r ~t!…

1
1

N
ln u@r ~tstr!,s~tseq!#J , ~5.4!
t

e

where the lnu@r (tstr),s(tseq)# term provides an infinite well
potential.

These arguments show that biological constraints will
troduce a correction to the sequence-structure potential te
Yet the arguments of the previous section still hold. T
sequence must wind around infinite potential spikes in
space, but nevertheless will preserve its Markovian statis
as a result of the high dimensionality of the space. Th
considerations of external biological constraints do not eff
the main conclusion of this work. Structure is dictated
sequence as a result of the high dimensionality of seque
space.

VI. SUMMARY

In this work, a path integral formulation of annealed pol
mers is presented. As in many applications of path integr
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the power of the technique lies more in the formal devel
ment than in practical computations. In the present case,
seen that the sequence walk and the polymer configura
can be treated as separate, but interacting ‘‘polymers.’’ T
formulation is analogous to Feynman’s influence function
that have been used to treat microscopic systems couple
heat baths. The heat bath provides a random external f
perturbing the system. In the present case, it is argued
because of its high dimensionality, the sequence walk
behave as an ideal ‘‘polymer.’’ The influence functional
the structure on the sequence is analogous to a random
ternal field. This provides the theoretical underpinning
Kimura’s neutral theory of evolution where there is a stro
stochastic component to sequence evolution. Because o
ideal nature of the sequence walk, the ‘‘coupling’’ of th
structure to the sequence can be treated in a variational f
ion. This insures the Markovian nature of the resulti
Green’s function and the phenomenological connection w
the Markov and hidden Markov models of sequence sta
c

ad
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is
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to

ce
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the

sh-
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tics. Finally, when the variational problem is treated in t
‘‘high temperature’’ limit, the Shannon information of th
structure is contained in the sequence. Thus, the variati
approximation presented in this work provides a model of
annealed heteropolymer that is consistent with a broad ra
of observed protein sequence behavior. The present form
ism can then be used to develop a physical theory of mole
lar evolution. In particular, it provides a statistical mecha
cal framework for describing rugged adaptive landscap
Secondly, it can provide a physical interpretation for t
transition probabilities obtained from statistical analysis
sequences with Markov models. This will allow, at least fo
mally, a connection between sequence statistics and s
ture.
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