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Statistical mechanics of protein sequences
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A statistical mechanical treatment of biological macromolecules is presented that includes the sequence
information as an internal coordinate. Using a path integral representation, the canonical partition function can
be represented as a product of a polymer configurational path integral and a sequence walk path integral. In
most biological instances, the sequence composition influences the potential energy of intersubunit interaction.
Consequently, the two path integrals are not separable, but rather “interact” via a sequence-dependent con-
figurational potential. In proteins and RNA, the sequence walk occurs in dimensions greater than three and,
therefore, will be an ideal “polymer.” The Markovian nature of this walk can be exploited to show that all the
structural information is contained in the sequence. This latter effect is a result of the dimensionality of the
sequence walk and is not necessarily a result of biological optimization of the system.
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[. INTRODUCTION mental observations of Anfinsd®]. In ongoing work, the

information content of protein sequencgl)|, of protein
There has been ongoing interest in primitive theoreticaptructureg11], and of the shared or mutual information be-
models of protein folding. These models have been both andween sequence and struct{ii] has been estimated. It has

lytic (cf. [1-3]) and computationalcf. [4—6], and[7]) and been argued, using information complexity, that the informa-

have focused on the minimal requirements that a polyme}jon content o_f a protein sequence is directly proportional to
its configurational entropy. It can also be shown that the

must have to fold like a protein. Typically, this work has information content of the structure is entirely contained in
focused on those properties that allow a polymer to have the information of the sequence. Thus, analysis from infor-

d'St".]Ct’ well-separated ground-state energy and to be. fhation theory is consistent with the experimental observa-
maximally compact structure. Much of the impetus of thiSijon that the information contained in a protein sequence is
past work came from the dgvelopr_nent of the theoretlcgl_l_)agufﬁciem to determine its structure.

sis for heteropolymer freezing. This revealed the possibility  The second feature of sequence-structure relationships is
of a phase transition between two compact globular polyKimura’s observation of random neutral mutations. Kimura
meric states. One of these states has an exponentially larggalized that protein sequences evolved at nearly a constant
number of conformations while the other is characterized byate, independent of phylogeny. He attributed this to a sto-
a small number of low energy conformations. Heteropolymerchastic evolutionary-neutral process of base substitution
freezing was originally couched in terms of a random energy13]. Thus, it appears that most proteins can sustain a signifi-
model[1] and was based upon the analogy with spin glassesant amount of variation in their amino acid sequence with-
[8]. A more general model based on the replica method wasut dramatically altering the structure. Since its inception,
subsequently developd@]. Most recently, these different the neutral theory of evolution has sparked considerable de-
approaches were melded in a mathematically simplifiedate. This theory was countered by a Darwinian selectionist
model[3]. In this work, it was shown that an annealed het-point of view that requires an evolutionary advantage for
eropolymer model could yield results comparable to the ranfutations to become fixed in a population. Subsequent work
dom energy model and only require a simple averaging prot_rom”both camps have softened the stance on the “arrow of
cedure. In the present work, additional properties of arfime” for evolutllon [14]. For our present needs, suffice it to
annealed heteropolymer are explored using a path integraf¥, that there is a strong stochastic component to protein
formulation. evolution.

Proteins in nature have other properties outside of those | N€ third observation on sequence-structure relationships
comes from the modeling of sequence statistics. Markov and

ex.plored by th_e primitive models. Many of these propertiesnidden Markov model§HMM) have been successfully ap-
arise from the interplay between sequence and structure. Th ied to a number of problems of pattern recognition in pro-

Bin sequencdd5,16. Such models have been used for mul-

) . tible sequence alignment, modeling of secondary structure,
lar evolution has a stochastic component, and sequence Sigsnsensus patterns in protein superfamilies and phylogenetic
tistics have a Markovian nature. As increasingly sophisti-reconstruction. These models are based on first order Markov
cated “primitive models” are explored, it is important to processes and are frequently successful in capturing the order
incorporate this broader phenomenology into the requirewithin a family of sequences. These observations suggest
ment for a minimal model of a proteinlike polymer. that protein sequences will obey a statistical “superposition

The underlying premise of the protein folding problem is principle” that reflects their underlying Markovian nature.

that sequence dictates structure. This premise has a long his- In this paper, a path integral formulation for annealed
tory in molecular biophysics and originated with the experi-heteropolymers is presented. This formalism is then used to
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explore conditions that are consistent with the sequence phe- 1

nomenology discussed above. In Sec. II, we present a heu- =- 6J d{R}G{R;HIn G{R;}H) +1n, Q.

ristic derivation of the relationship of the Shannon informa- 2.5

tion content of a polymer and its thermodynamic entropy.

This section serves to introduce the notations and the inforfhe first term on the right-hand side of E@.5) represents
mation theoretical relationships used throughout the papethe information content of encoding the walk of the polymer
Section Il presents the configurational integral of theconfiguration. For an ideal polymer, it is the information
sequence-structure system using the sequence as internal @@ntent of a Markov chain. The second term is the length of
ordinates of the system. In this section, the concept of sethe binary string required to specify the number of configu-
quence space is introduced and the sequence is viewed asational states available to the system.

walk or ideal polymer in that space. A path integral repre- The thermodynamic entrop$ for the polymer, can be
sentation of the canonical partition function is presented thagletermined from standard statistical mechanical relationships
views the system as one analogous to two separate, interagivolving the Helmholtz free energy:

ing polymers. In the present case, one of the polymers is the

sequence walk while the second one is the actual polymer. Q=e"FF, (2.6
This result is then used to derive general expressions for the

entropy of the system and to show the contributions from JF

sequence and polymer configuratisiructure. In Sec. IV, S=- a1 2.7

the sequence-structure path integral is represented as a se-
guence path integral with an influence functional. A varia-With these results, one finds
tional expansion of the path integral is developed and the
Shannon information properties are established. In Sec. V,

k
- —— . ) —BW({R;})
we show how to introduce biological constraints into the S Qf d{R;}G({Ry})In(e ) +kinQ,

formalism. As will be seen, biological constraints effectively (2.9
act as an external potential. Section VI presents a brief sum-
mary of these results. where the natural logarithm is now used. Using Gibbs’ in-
equality[18], one obtains
Il. INFORMATION CONTENT OF A POLYMER S=klIn2. 2.9
CONFIGURATION

In this heuristic section, the calculation of the ShannonThe difference in the Shannon information entropy and the

information entropy for a configurational state of a po|ymerthermodynamlc entropy is a term that is proportional to the

is presented. As will be seen, this quantity can be related tg2dius of gyration squared. In some applications, this will

the thermodynamic entropy. Since the calculation of the ShSIMPly be a constant anldwill be proportional toS
annon entropy is central to later arguments, this section pro-

vides the groundwork for the paper. Following the canonical ll. PATH INTEGRAL FOR AN ANNEALED
description of a polymer chain & units with a set of bond HETEROPOLYMER
vectors,{R;}, the probability of a given chain configuration

Lo A statistical mechanical model of biomolecular structure
is given by[17]

that formally incorporates sequence information into the con-
figurational statistics of the polymer is presented in this sec-
PUR})= G({Ri})’ (2.1) tion_. _The aim of _this model is to establish the conditions
Q sufficient to describe the three phenomenological features of
sequence-structure relationships. To this end, we introduce
where sequence information as an internal coordinate to the poly-
mer. This is analogous to a polymer whose units have dis-
N crete internal coordinates similar to &dimensional spin
G({Ri}):exﬁ—ﬂw({Ri})]Hl 7(Ry), (2.2 model. This puts sequence variables on an equal footing with
= spatial variables. Such a description has been employed pre-
viously in a heteropolymer, random energy model of a pro-
tein [3]. The simultaneous averaging over spatial and se-
quence coordinates gives the partition function for an
Q:f d{RIG({R}). (2.3  annealed heteropolymer. This annealed polymer model had
the attractive feature that the thermodynamic averages do not
require the complicated replica averaging procedure found in
The bond probability distribution function is given bYR;),  other disordered systems. Such annealed polymer models

and the canonical partition function is

andW({R;}) is the potential energy. show the properties required of primitive protein folding
Given a population of polymer configurations, the Shan-models.
non information entropyl, is defined as To describe the configuration of such a polymer, one must

consider the sequender spin vector,s, of each compo-
_ nent along with the bond vectors,. The sequence vectors
1= f d{R;}P({R;HIn P({R;}) (24 are unit vectors used to describe the chemical identity of the
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polymeric unit. They are given by where the sequence “bond distance” is taken as unity. Fol-
lowing the treatment of discrete spatial coordinates, the se-
s(1)={1,0,....0, quence bond probability function is taken as a continuous
Gaussian distribution. The potential terms in ES.5),
s(2)={0.1,....0, B.D)  wW({R}) andW’'({R;},{S}), are the potential of interactions

between polymeric units that are independent and dependent

on sequence, respectively. The present model differs from an

“Ising polymer” in that there is no potential term such as
s(m={0,0,....3, W’({S}). This is because there is no physical basis for in-

] ) teractions between amino acids as compositional units. The
wherem is the length of the alphabet used to describe theequential composition of the biopolymer influences succes-
sequence and each vector represents an individual aminge ynits via its effect on the physical configuration, i.e.,
acid (for proteing or nucleotide(for RNA). For proteinsm W’ ({R;},{S}) and not by any through space interactions as
=20, for the 20 different amino acids. For nucleic aciais, j, the spin case.
=4, representing the four different nucleotides. Note that Considering the discrete nature of the sequence walk, it
this vector represen_tat_ion of sequence composition is differmay appear that Eq3.7) is a serious and highly specific
ent than the description of “"sequence space” commonlyzssymption. Actually, when used in conjunction with the
used by evolutionary biologist49,20. Sequence space is a |imjting procedure implicit in the path integral formulation, it
high-dimensional space where each possible sequence of afyides a standard description of a discrete random walk
N unljc polymer has its own d|.menS|0n. Thus, f_or a prote_ln of([21], see alsd22]). One should also bear in mind that the
N units, sequence space will haveN26'|menS|ons. While  sequence walk need not be self-avoiding. Thus, there is no
this space is convenient for conceptualizing sequence evolyeed to incorporate excluded volume effects into the path
tion, it does not have practical utility for our present pUrpose;ntegral for this walk.

Instead, a biopolymer sequence is represented as a “configu- |nstead of working with the configurational probability

ration” of sequence vectors. _ o distribution function, Eq(3.3), the simpler end-to-end distri-
The sequence position vector for thin unit within the  pytion function is considered. This is given by
polymer can be described in a similar manner as the spatial

position vector: P(RoRN,S0,Sv:N)=G(Rg,RN, S, Sy, N)/Q, (3.9

) with the end-to-end partition function as

Q=f dRodRNASASG(Rg, RN, S, Sy ,N). (3.9

The bond vector can also be represented in terms of position

o ntormal coordinites. the probaniity of A sonfiguation iSJSiNd @ path integral representation for the: end-to-end
’ p y 9 Greens function, one has

given by
PU{R}{SH=G(RL{SH/Q, 33y CRoRuSSN)
S(N)=Sy r(N)=Ry
with the partition function given as = LO)SO D[S(T')]fr(o)R Dlr(7)]
Q=f d{R}d{S}G{Ri}.{S}). (3.4 Xexﬁ{—l/NfoNdeT'{(Z/m)éZ(T')
0 JoO

The Greens function is defined as )
+(2/3)r3(7)}

N

GUR}ISH=II ~{R}H7({SH

=1

N (N
xex;{—l/NJ f drd7'{BV(r(7))
x @ AW{RN g~ AW ((Ri}{S}) (3.5 0oe

with the spatial bond probability distribution functi¢n7]: +BV(S(7'),r(7)}, (3.10

3\% [-3R? : -
m) exp( i ) (3.6) wherer and 7’ are the continuous space curves of the poly-

2| mer configuration and the sequence walk, respectively, and
) _ . ) the “dot” notation is the derivative with respect to these
wherel is the bond distance. The sequence “bond” prob-cyryves. The potentia(r(7)) andV’(s('),r(7)) now rep-

T(R)=7(ri—ri_y)=

ability function is assumed to be of the following form: resent the continuous versions oW({R;]}) and
3/2 _ SZ W,({Rl}i{s})
8= ru(§—§ 1) = (ﬂ) ex;{ m ) 37 Interestingly, the partition function, Eq3.9), can be
s -1 2 2 ) ' viewed as representing two independent polymers that inter-
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act through a potential. One polymer is the actual physical s(N)=Sy
entity in three-dimensional space while the second “virtualG(Ro,Rn,So, Sy ,N)Zf ®(Ro,Ry,S(7))
polymer” is the m-dimensional walk in sequence space. L0=%
When V' (s(7'),r(7))=0, there are no interactions and the N .
polymers are independent of each other. In this case, the Xex;{—fo dr'{(2/m)s’(7")}

partition functions are separable:
with the influence functional defined as

Q= QstrQseq’ (3.11 r(N)=Ry
| RS [ i)
and the entropies and the Shannon information will be inde- 1(0)=Rg
pendent of each other:

Dls(7)], (4.1)

N .
xex;{ - JO dr{(2/3)r?(7)}

S=Sgt Sseqa (3.12
N (N
Izlstr'Hseq- (3.13 XeX[{—l/NJ J drd7’
0Jo
In such a case, there is no shared information between se-
quence and structure. Note, however, that the sequence in- X{BV(r(m)+ BV (S(r),r (D)} ]. (4.2
formation makes a true contribution to the thermodynamic

entropy. This thermodynamic contribution is loosely analo-

gous to the residual entropy found is certain crystals wheﬂ;llesfrz]egiéh@aﬁ%i?ﬁ f%?gé%nbE?}gﬁé% rlr?(gi?etlr\;li\ﬂforce
specific molecular configurations are frozen into the system. = = q 9 ! Dy S '
In this analogy, the force is derived from the physical inter-

For c0n5|deratl;)rl1zs Bogzmpliﬁuﬂh evolutlor:h the ljmportgntunit potentials in the polymer. This formulation is in keeping
consequence of Eq3.19 is that the same thermodynamic with Kimura’s observation of a stochastic component to se-

pressures to maximize the entropy of the structure will alsg ence evolution. In this case, structurally neutral changes
drive the sequence. In gener®(s(7'),r(7))#0, and this  jve an apparent random change in sequences.
situation is considered in the next section. The sequence walk described above occurs in a space
with dimensionality greater than three. This is the critical
IV. SEQUENCE-STRUCTURE INFLUENCE FUNCTIONALS dimension for random walks. Walks of dimensionality
i ] greater than or equal to four will be ideal random walks
For most biopolymers, Eq¢3.11), (3.12, and(3.13 will 22,23, While the potential termV’(s(+),r(7)) will pro-
not hold. The polymer-sequence interaction term ensures thgide some strong constraints on possible sequences, these
there will be a shared Shannon information, as well as therconstraints will essentially be potential spikes in a high di-
modynamic entropy, between sequence and structure. A denensional space. The sequence walk can avoid forbidden
tailed analysis using E¢3.9) would obviously be extremely regions without significantly altering its end-to-end statistics.
difficult. Nevertheless, there are certain aspects of this probFhis is a consequence of the high dimensionality of the
lem which allow some conclusions to be drawn. The mainspace.
consideration is the nature of the “sequence polymer” or With these considerations, it is anticipated that the path
walk. Because the dimensionality of the walk is four orintegral in Eq.(4.1) will result in a Gaussian distribution of
higher for biopolymers of interest, the resulting “sequencethe end-to-end sequence vector. The sequence walk can be
polymer” will be ideal (cf. [22,23). This is because the Viewed as an extremely “high temperature” walk that will
probability of a polymer folding back on itself in dimensions Not be strongly influenced by external potentials. This situa-
greater than three is virtually nonexistent. Therefore, therdion is ideal for the application of variational methddb].
will be no excluded volume effect. Consequently, the engdn suqh an approach, the influence functional will take the
to-end probability function can be represented as an idedP!lowing form: 0 -R
. ; e . =Ry
polymer, ie,a Ga.ussuan distribution. Because of this eﬁeqt, ®(Ry,Ry, ’S(T,)):f Dr(n)]
perturbation techniques could be used to treat the potential r(0)=Ry
energy term. \
~ One could develop cluster expansions of the potential us- Xexr{ _J dT{(2/3|)f2<T>}}
ing the polymer perturbation approaches described previ- 0
ously [24]. However, in the present work, a variational ap-

proach using influence functionals is taken. The Green’'s Xexr{—deT{,BV(r(r))+ﬂV’(§r’),r(r))} '
function, Eq.(3.10, can be represented in a manner similar 0
to Feynman'’s influence functiondl5]. Feynman developed 4.3

the influence functional to describe the interactions of a m"where the trial potentia‘l/’(gr’),r(r)) is a potential taken

croscopic sys'gem with a heat bath. In the present case, tI'b(?/er some average path of the sequence walk. For the
polymer path integral equivalent of the influence functlonalpresent formal development, we need not specify the specific
represents the interaction of two “polymers.” The systeMs,.m needed to optimize this potential.
consists of the “virtual polymer,” given by the sequence  The sequence end-to-end probability function is given by
walk, interacting with potentiaV/’ (s(7'),r(7)) with the ac-
tual polymer. B

The end-to-end Greens function can be represented as P(So.Sy ’N)_f P(RoRn:So,Sn:N)dRodRy . (4.4)



4656 T. GREGORY DEWEY PRE 60

A perturbative expansion of the potential term gives

JdROdRN{P(RO,RN1SO-SN-N)|nP(RO,RNaSmS\I-N)}
_ r(N)=Ry _
<V’(S(T’),r(7))>=fjr(0)_R DIr(n)1BV'(s(7),r(7))

f P(RO,RN,%,m,N>dROdRN]

N
Xex;{—f dr{(2/3)r%(7)+ BV(r(7)}|dRdRy .
0 XIn JP(RO’RN,SO,SN,N)dROdRN}. (4.11
(4.5
Because the high-dimensional sequence walk will be ideal, 4N€ Use 0f EQ(4.6) implies that exp—pBV'(s(1').r(7))
first order perturbative expansion can be considd@g.  ~(exp—pBV'(s(7'),r(7))). ~This is equivalent to
This gives an end-to-end probability function as (V'N(S(7"),r(7))y=(V'(s(7"),r(7)))N. Consequently, the
_ equality in Eq.(4.11) can be established by a series expan-
e BV )17 roN)=sy sion. Thus, the third phenomenological feature, sequence
P(S.S\N)= TJ dictates structure, is handled by the present model.
L0=% The role of sequence information in determining the
N . folded three-dimensional structure of the polymer has his-
xex;{— fo dr'{(2/m)$(7")} |D[s(7)]. torically been considered a salient feature of prot¢dis It

is natural to presume that this feature goes hand in hand with
(4.6)  the biological function of the folded state of the protein.
While there are doubtless biological driving forces favoring
This distribution function is essentially a random walk pathprotein sequences that fold into unique structures, this phe-
integral multiplied by a potential-specific amplitude term. nomena is not necessarily a result of biological selection. As
This function shows the Markovian nature of the sequenc&hown in this work, any polymer with a composition of more
walks. Since Eq(4.6) will obey a Markovian superposition  than three distinguishable chemical units can have the prop-
principle, it establishes the connection with the phenomenolerty of sequence dictating structure. This is a consequence of
ogy of sequence modeling. This result suggests that Markowhe high dimensionality of the sequence walk. In the present
and hidden Markov behavior of protein sequences will occukyork, we considered a variational treatment of the polymer
when the perturbative expansion in E4.5) is valid. statistics that leads to the condition that all the structural
The final phenomenological feature to be explored is theénformation is contained within or shared with the sequence
relationship between sequence and structural information. fhformation. Our goal in doing this is not to explicitly solve
sequence predicts structure, then all of the information conthe configurational partition function. Rather, the formal re-
tained in the structure is shared with the sequence. The insylt is that within the assumptions leading to an accurate
formation of the sequence-structure system is given byariational solution, sequence will dictate structure. Thus,
(12,27 there are physical conditions that can lead to the biologically

important observations on protein sequence-structure rela-
I(R,S=1(S+I(R)—I(R:S), (47 tionships.

where I(R,S) is the joint information content of the
sequence-structure systenfS) and|(R) are the informa-
tion contained in sequence and structure, respectively, and
I(R:S) is the mutual or shared information between Se- The results of the previous section show that sequence
quence and structure. Observations on proteins suggest tha{,, dictate structure in biopolymers when certain physical

V. INTRODUCING BIOLOGICAL CONSTRAINTS
INTO THE FORMALISM

I(R:§)=1(S). This is equivalent to conditions are met. This physical explanation is counter to
L(RS)=1(S 48 the traditional view that protein evolution was driven by bio-
(RS=I(S). (4.8 logical structural and functional constraints. In this tradi-

ional view, biological pressures forced proteins to be more
han collapsed heteropolymers, but rather to assume highly
specific three-dimensional structures. To achieve structures
with specific functions, proteins consisting of a uniqgue amino

The joint Shannon information based on the end-to-end joini
distribution function is given by

I(R,S)zj dRydR\ASHdSW{P(Ro RN, Sy, Sy N) acid sequence are required. As a result of this evolution, the
information inherent in the sequence is carried over to the
XINP(RoRN, Sy, Sn:N) Y, (4.9  structure. . - .
Given the physical model of biological sequences pre-
and the sequence Shannon information is sented in the previous section, the natural question is, how

do biological pressures influence sequence walks? At first, it

might appear that because of the high dimensionality of the

1(S)= f dSydS\{P(So, Sy N)INP(Sp, Sy, N)}- walk, the statistics of protein sequences will be unaffected by
(4.10 external influences. This is true for parameters such as the

radius of gyration or end-to-end probability. The vastness of
Condition (4.8) is satisfied when sequence space allows significant constraints to be put on the
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system without altering the nature of the sequence walk. Biomalism, we then follow an approach similar to that used to
logical constraints placed by evolutionary pressure can bé&reat crosslinked polymef®1]. Taking Eq.(3.4) as a start-
viewed as external to the sequence-structure system. Thesgy point, these constraints are included as
constraints are fixed by the nature of the organism, the envi-
ronment, and the individual phenotypes that are being ex- _
pressed by a given individual. They will rarely be altered Q_f d{Ri}d{S}otk—K({Ri.SIHIC(R}.{S}),
once the protein has been optimized through evolution. In (5.9
this regard, they are similar to systems with “permanent en- _ ) o
tanglements.” Such systems occur when external fields oWnereK({R;,Sj}) is a mathematical description of the con-
size constraints are placed on the system. Such a system mg§j@int, andk is the particular value of the constraint in the
be a polymer in a confined space. Similarly, if the system iSystem. For the case of an enzymhg{R; ,S}) may repre-
prepared in such a manner where there are irreversible linig€nt the specification of the structural and sequence charac-
ages, as in crosslinked polymers, then the system has fixd@ristics that the system must have for the enzyme to have a
constraints. catalytic activity at a biologically viable level. It might in-
The specification of a biologically functional macromol- clude the sequence and structural requirements for the en-
ecule can yield these sorts of constraints in sequence spady/Me to have some minimal steady state kinetic property.
For instance, a DNA binding protein must be positively One can return to the Gau35|an_l|m|t of tﬁe‘un_ctmn _and
charged to associate with the negatively charged DNA. IrH/Se the limiting process that defmeg the functional _mtegral.
this case, negatively charged amino acids must be effectivelgince K({R;,S}) will have a complicated form, this ap-
excluded from such a protein. This condition will essentiallyProach will recover a Gaussian integration over a compli-
form a wall in sequence space, that the sequence walk canngdted function inR;,S}. _ _
penetrate for biological reasons. A second example can be A conceptually and mathematically more appealing ap-
found in enzymes. Typically, there are two or three aminoProach is to use the Dirichleg function to represent the
acids at the active site of an enzyme that are inviolate. Alconstrain21]. The constraint defines regions of configura-
tering these amino acids will destroy all enzymatic activity. tion and sequence space that cannot be occupied because of
This condition serves as an external biological constraint thass of biological activity. This definition also allows one to
crosslinks or ties down the sequence space trajectory to spketurn to the path integral representation. The region that can
cific locations. The need for biological activity for a macro- b€ occupied is defined as The constraint is now defined as
molecule creates a complex and varied set of constraints for
the sequence space trajectory. Yet, because sequence space is o(lr.s) :{ {rsteV
of such a high dimensionality, these constraints will have ' 0 otherwise.
little effect on the overall statistics of the trajectory.
To incorporate external biological constraints into the for-The Green'’s function with constraints is now given by

(5.2

s(N)=Sy r(N)=Ry N (N . :
G(RO,RN,SO,SN,N)=L(O)SO D[S(T')]f(o) ] D[r(r)]exp[—lleo fo drd7'{(2m)s*(7') +(2/3)r*(7)}
_ [(0)=Ry
N N N N
xexp[—llN |7 anartaviey+ v st TLTT ot sl (63
Tseq Tstr

Treating the Dirichlets function as a logarithm of exponen- where the If[r(7gy),S(7seq | term provides an infinite well
tials, one recovers an infinite barrier potential function. Itpotential.
goes to infinity outside o¥’ and is 0 inside o). The con- These arguments show that biological constraints will in-
straint modifies the sequence-structure potential term in thgoduce a correction to the sequence-structure potential term.
path integral, BV’ (s(7'),r(7)), giving an effective interac- Yet the arguments of the previous section still hold. The
tion: sequence must wind around infinite potential spikes in its
space, but nevertheless will preserve its Markovian statistics
as a result of the high dimensionality of the space. Thus,
N [N considerations of external biological constraints do not effect
fo fo drd 7' BVeS(7'),r (7)) the main conclusion of this work. Structure is dictated by
sequence as a result of the high dimensionality of sequence
N [N space.
= f f deT’(BV’(S(T'),r(T))
0 7o VI. SUMMARY

1 In this work, a path integral formulation of annealed poly-
+— . . ' . L ;
N In 0[r(75")’s(759")]]’ 4 mers is presented. As in many applications of path integrals,
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the power of the technique lies more in the formal develop4ics. Finally, when the variational problem is treated in the
ment than in practical computations. In the present case, it ishigh temperature” limit, the Shannon information of the
seen that the sequence walk and the polymer configuratiostructure is contained in the sequence. Thus, the variational
can be treated as separate, but interacting “polymers.” Thigpproximation presented in this work provides a model of an
formulation is analogous to Feynman'’s influence functionalsannealed heteropolymer that is consistent with a broad range
that have been used to treat microscopic systems coupled & observed protein sequence behavior. The present formal-
heat baths. The heat bath provides a random external foréism can then be used to develop a physical theory of molecu-
perturbing the system. In the present case, it is argued thédr evolution. In particular, it provides a statistical mechani-
because of its high dimensionality, the sequence walk wilcal framework for describing rugged adaptive landscapes.
behave as an ideal “polymer.” The influence functional of Secondly, it can provide a physical interpretation for the
the structure on the sequence is analogous to a random etxansition probabilities obtained from statistical analysis of
ternal field. This provides the theoretical underpinning forsequences with Markov models. This will allow, at least for-
Kimura’s neutral theory of evolution where there is a strongmally, a connection between sequence statistics and struc-
stochastic component to sequence evolution. Because of there.
ideal nature of the sequence walk, the “coupling” of the
structure to the sequence can be treated in a variational fash-
ion. This insures the Markovian nature of the resulting
Green's function and the phenomenological connection with This work was supported in part by NIH Grant No.
the Markov and hidden Markov models of sequence statisiR15GM55910.
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